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1  Introduction 

1.1 Purpose of this document 

This document was created as part of the Levitate project. The purpose of this document 
is to define the Connected and Autonomous Vehicle (CAV) parameter sets for driving logics 

that are used in the Levitate project. The behaviour parameter sets are based on the 
microscopic traffic simulation software Aimsun Next (Aimsun, 2021). The assumptions on 
CAV parameters and their values were based on a comprehensive literature review, 
including both empirical and simulation-based studies (e.g., Cao et al., 2017; Eilbert et al., 
2019; Goodall yet al., 2020; de Souza et al., 2021; Shladover et al., 2012), as well as 
discussions in meetings with experts, conducted as part of Levitate project.  

1.2 The Levitate project 

Societal Level Impacts of Connected and Automated Vehicles (LEVITATE) is a European 
Commission supported Horizon 2020 project with the objective to prepare a new impact 
assessment framework to enable policymakers to manage the introduction of Cooperative, 
Connected and Automated Mobility (CCAM), maximise the benefits and utilise the 
technologies to achieve societal objectives. 

Specifically LEVITATE has four key objectives:  
1. To establish a multi-disciplinary methodology to assess the short, medium, 

and long-term impacts of CCAM on mobility, safety, environment, society, and 
other impact areas. Several quantitative indicators will be identified for each 
impact type.   

2. To develop a range of forecasting and backcasting scenarios and baseline 
conditions relating to the deployment of one or more mobility technologies that 
will be used as the basis of impact assessments and forecasts. These will cover 
three primary use cases – automated urban shuttle, passenger cars and freight 
services.   

3. To apply the methods and forecast the impact of CCAM over the short, medium, 
and long term for a range of use cases, operational design domains and 
environments and an extensive range of mobility, environmental, safety, 
economic and societal indicators. A series of case studies will be conducted to 
validate the methodologies and to demonstrate the system.   

4. To incorporate the established methods within a new web-based policy support 
tool to enable city and other authorities to forecast impacts of CCAM on urban 
areas. The methods developed within LEVITATE will be available within a toolbox 
allowing the impact of measures to be assessed individually. A Decision Support 
System will enable users to apply backcasting methods to identify the sequences 
of CCAM measures that will result in their desired policy objectives.  

For more information see https://levitate-project.eu/.  

1.3 Issues with CAV Behavioural Parameters 

As there are no real-world data available, research studies have to make assumptions 
through available knowledge from literature and earlier level automated vehicles systems. 
There is a key knowledge gap concerning the manner in which CAVs will drive in traffic and 
interact with other road users. Simulation models specify these behaviours through a set 

of parameters and functions that determine the operation of the simulation models. Since 

https://levitate-project.eu/
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there is no firm data on the behaviour of CAVs these parameters and functions must be 

estimated or assumed.  
 
Within Levitate, the assumptions on CAV parameters and their values were based on a 
comprehensive literature review, including both empirical and simulation-based studies, as 
well as discussions in meetings with experts, conducted as part of the Levitate project. 
Some guidance on the behaviours was also obtained through studies on Adaptive Cruise 
Control (ACC) and Cooperative Adaptive Cruise Control (CACC) systems. Section 2 
presents the findings from the literature review. 
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2 Literature Review on the Expected 

Behaviours of CAVs  

Since there is no real-world data available on fully autonomous vehicles (AVs), previous 
studies on autonomous vehicles have based their investigations either using 

microsimulation tools, driving simulators, or experimental data based on early levels of 
automated vehicles. Traffic microsimulation studies have attempted to predict the potential 
impacts of autonomous vehicles through modelling their expected behaviours (e.g., Arvin 
et al., 2021; Shi et al., 2020; Ye and Yamamoto, 2019; Morando et al., 2018; Tibljaš et 
al., 2018).  

The driving behaviours of connected and automated vehicles can be simulated by changing 

the driving model parameters that use human drivers’ data, and/or inventing new 
intelligent logic for vehicle communications and cooperation (Ahmed et al., 2021). In order 
to model the behaviours of future connected and automated vehicles and accurately 
represent real-world traffic conditions, a proper calibration, which consists of selection and 
modification of input parameters values, needs to be undertaken before running the model 
(FHWA, 2018; TfL, 2010). In this context, many efforts have been made earlier by various 
researchers to calibrate the driving model parameters. A recent study by Alhariqi et al. 
(2021) proposed an adaptive Intelligent Driver Model (IDM) calibration process for 
intelligent vehicles in mixed autonomy traffic using real-world experimental trajectory 
data. The experiments were carried out on a single-lane circular road with a radius of 41.4 
metres (260 metres) with a fleet of 21 or 22 vehicles including one intelligent vehicle. The 
results revealed that the proposed adaptive IDM and calibration method accurately 
reproduce the traffic conditions in mixed autonomy traffic.  Bhattacharyya et al. (2020) 
presented a methodology that adopts a genetic algorithm (GA)-based optimisation 
technique for calibrating traffic microsimulation models in mixed-traffic conditions. The 
results showed that with vehicle mode-specific optimised parameter sets, a model for non-
lane based mixed-traffic conditions, can be successfully achieved. In this regard, 
Pourabdollah et al. (2017) calibrated three car following models that were used in SUMO, 
i.e., the intelligent driver model (IDM), the Krauss car following model and the Wiedemann 
car following model. The parameters of each model were optimised using a Genetic 
Algorithm from around 200 recorded trips that were collected from human drivers driving 
on the Drive Me route, which is an autonomous drive test route in Gothenburg, Sweden. 

In comparison to the other two models, the simulation results showed that the optimised 
IDM can best imitate driving behaviour.  

Efforts made by previous research studies can be used as guidelines on the appropriate 
calibration of input parameters for microscopic traffic simulation models, needed to enable 
an accurate reflection of the traffic conditions. In order to seek the guidance on various 
characteristics and accordingly range of parametric values to be adopted in simulation 

models, various previous studies were reviewed focusing on defining the behaviours of 
autonomous vehicles, the findings from which are presented below.  

Car Following Behaviour 

To understand the car-following behaviour of future autonomous vehicles, previous studies 
on early level automated vehicles comprising of Adaptive cruise control (ACC) and 
Cooperative Adaptive Cruise Control (CACC) were reviewed. In this context, the Federal 
Highway Administration (FHWA) report on the meta-analysis of ACC applications (Eilbert 
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et al., 2019) presents findings from various previous studies to characterise the behaviours 

of manual driving, ACC, and CACC applications. The findings of the meta-analysis showed 
that having a lead CACC vehicle, drivers accept the shortest adjustable time headway with 
CACC systems presumably due to anticipation of the driving behaviours of the lead CACC 
vehicle. The time headway of 0.6s has been reported most frequently in the previous 
studies. With respect to manual driving, the findings from previous studies, in the meta-
analysis, report comparatively longer time gaps varying from 0.8 s to 1.6 s. For ACC 
systems, the findings from the previous studies indicate two modes of driving styles; one 
that keeps the time headway setting shorter up to 1.1s (to avoid any cut-in vehicles) and 
the other with 1.5s gap possibly because of lack of confidence in the system to stop in 
time. Therefore, the meta-analysis findings identify ACC vehicles to have, on average, 
higher time gaps than human-driven vehicles (HDVs). This finding that ACC system 
equipped vehicles have similar or even longer reaction times than human drivers, has been 
approved by other European Commission funded research (Makridis et al, 2018). The 
California Partners for Advanced Transportation Technology (PATH) research (Nowakowski, 
2011) findings suggest an acceptable time headway from 1.1 to 2.2s for ACC systems, and 
from 0.6 to 1.1s for CACC systems. It is also important to note that the initial desired time 
gaps may be shorter than the actual operational ones due to the conservative/defensive 
car-following nature of ACC systems (Calvert et al., 2017). Additionally, ACC systems have 
been found to have desired time headway range of 1.2 - 1.8 s whereas human drivers tend 
to vary between 0.5 - 1.5 s. Another aspect to note is that under the congested traffic 
conditions, the ACC time headway distribution skews longer than those of human drivers 
(Calvert et al., 2017).  

The Wiedemann 99 car-following model is utilised in VISSIM software (by PTV Group) to 

render possible the modelling of various driving behaviours. The car-following parameters 

concern thresholds for safety distance, speed and acceleration/deceleration rates while 

some of the most widely utilised are headway time, that is the time between the lead and 

following vehicle in crossing a given point, and is set to 0.9s (default value), oscillation 

acceleration that is the minimum acceleration/deceleration during the following process 

and is set to 0.82ft/s2 and, standstill acceleration defined as the desired acceleration when 

starting from standstill and set to 11.48 ft/s2 (default values-human driven vehicles). In 

the AV simulation environment, using the aforementioned model, when there is 

communication with the lead vehicle the time headway has been suggested to adjust to 

0.3s, 0.6s or 1s, oscillation acceleration to 0.25 m/s2 and standstill acceleration to 3.5m/s2. 

In the case of no communication between the lead and the following vehicle, the 

acceleration parameters remain the same, but the headway time is set strictly to 1s. 

Furthermore, Atkins (2016) proposed different model parameters according to SAE 
levels. Level 3 incorporates the degree of aggressiveness of AVs and consists of four 
subcategories as shown in   
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Table 1. 
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Table 1: Wiedemann model parameter variation and VISSIM user-defined attributes (adjusted from Ahmed et 

al., 2021) 

Capabili

ty levels  

 Head

way 
time 

(gap) 

Oscillati

on 
Acceler

ation  

Stand 

still 
acceler

ation 

Min 

clearance 
(m) 

Safety 

distanc
e 

reducti
on 

factor 

User 

defined 
min 

time-
gap(s) 

User 

defined 
min 

clearance 
(m) 

Level 2   0.9 0.25 3.5 0.5 60% 3 5 

Level 3 Cautious 1.8 0.1 3.2 0.8 90% 3.6 6.5 

Normal 
cautious 

1.2 0.2 3.4 0.6 70% 3.2 5.5 

Normal 
assertive 

0.8 0.3 3.6 0.4 50% 2.8 4.5 

Assertive 0.6 0.4 3.8 0.2 30% 2.4 3.5 

Level 4 0.5 0.6 0.4 3.8 0.2 30% 2.4 3.5 
  

In the same line, the CoEXist project (https://www.h2020-coexist.eu/), in order to 

simulate the expected behaviour of CAVs using VISSIM microsimulation, has developed 

driving behaviours depicted in model parameters and presented as cautious (conservative, 

safer vehicle manoeuvres, larger headways), normal (default urban motorised driving 

behaviour) and aggressive (traffic situation prognosis, minimum gaps). Some of these 

parameters are shown in Table 2. 

Table 2 : Model parameters for three different AV behaviours (PTV Group, 2019) 

  Parameters AV 
cautious 

AV 
normal  

AV 
Aggressive 

Car -following Headway time (s) 1.5 0.9 0.6 

Standstill Acceleration (m/s2) 3  3.5 4 

Lane change Max deceleration for necessary lane 
change (m/s2) for own vehicle 

-3.5 -4 -4 

Accepted deceleration (m/s2) for own 
vehicle 

-1 -1 -1 

Furthermore, according to Ding et al, (2021), the maximum acceleration value in CAVs is 

higher than in human-driven vehicles while the desired time gap is shorter showing that 
CAVs can maintain a smaller distance headway with the lead vehicle. After calibration 
process for the rear vehicle as a CAV or a HDV, for a leader-follower pair, the study showed 
that the optimal value for desired time gap was 2.09s, the maximum acceleration 1.83 
m/s2 and the desired deceleration 2.11 m/s2. The bounds in optimization were 0.1 to 5 for 
all the parameters. 

Trende et al. (2019) have presented research regarding customisable user profiles for 
autonomous vehicles utilising predefined driving profiles namely defensive (increased 
comfort and perceived safety), normal (average preferences), assertive (efficiency and 
trust in vehicle safety) and light rail transit (very low accelerations and decelerations, e.g., 
0g to 0.14g).   
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Table 3 presents the ranges of accelerations for defensive assertive and low rail transit 

style (LRT) according to Yusof et al., (2016). 
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Table 3 : Acceleration ranges for different driving styles (Yusof et al., 2016) 

Acceleration type Defensive Assertive LRT 

Longitudinal acceleration (g) 0.14 – 0.25 0.25 – 0.5 0 – 0.14 

Longitudinal deceleration (g) -0.14 – (-0.33) -0.33 – (-0.76) 0 – (-0.14) 

Lateral acceleration (g) 0.15 – 0.42 0.42 – 0.54 0 – 0.15 

Acceleration and Deceleration Characteristics 

In terms of acceleration and deceleration, autonomous vehicles are expected to provide a 

more comfortable driving experience for passengers (AASHTO, 2001). A study conducted 
by Le Vine et al. (2015) suggested that the autonomous vehicle is expected to accelerate 
and decelerate slower than a human-driven car while also being faster (or possibly the 
same) than light rail transit. The list of accelerations and decelerations for both the LRT 
and human-driven cars from previous studies are summarised in Table 4. 
 

Table 4: Longitudinal and lateral accelerations and decelerations for light rail transit and human driven cars (Vine 

et al., 2015; Bogdanović and Ruškić, 2013; El-Shawarby et al., 2007; Hugemann and Nickel, 2003; 

Parsons Brinckerhoff Team, 2004; TCRP, 2012) 

 LRT Typical human-driven 
Car 

Upper limit in 
human-driven car 

Longitudinal 
acceleration 

1.34 m/s2 or 0.14 g 2.47 m/s2 or 0.25 g 4.86 m/s2 or 0.5 g 

Longitudinal 
deceleration 

- 1.34 m/s2 or 0.14 g - 3.27 m/s2 or -0.33 g - 7.47 m/s2 or -0.76 g 

Lateral 
acceleration 

1.47 m/s2 or 0.15 g 4.10 m/s2 or 0.42 g 5.30 m/s2 or 0.54 g 

A recent study by Chai et al. (2020) evaluated the Responsibility-Sensitive Safety (RSS) 

model applied to adaptive cruise control (ACC) systems. RSS is a mathematical model for 
assuring the safety of AVs and it defines the “safety state” of AVs based on appropriate 
response rules. The maximum desirable longitudinal acceleration and deceleration for ACC 
were set at 4m/s2 and 5m/s2, respectively. 

Lu et al. (2020) carried out a simulation study to investigate the impact of autonomous 
vehicles on urban traffic networks by using SUMO software. The acceleration parameter 
implemented in the car-following model was 3.5 m/s2 and 3.8 m/s2 for no automation and 
full automation, respectively; the parameter of deceleration was 4.5 m/s2 for both no 
automation and full automation. 

Concerning a comfortable driving, Zhu et al. (2020) suggested that the acceleration range 
should be between -3 and 3 m/s2 which was based on the observed following vehicle 
acceleration of all the car-following events. Regarding the deceleration rate, the threshold 
of 3.4 m/s2 was recommended by AASHTO (American Association of State Highway and 
Transportation Officials, 2001) for a comfortable deceleration for most drivers, and 3m/s2 
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was proposed by ITE (Institution of Transportation Engineers, 1999). The study conducted 

by Saptoadi (2017) also recommended the deceleration rates between 3 and 3.5m/s2 for 
environment-friendly city driving, which are in line with AASHTO and ITE 
recommendations.  

The limit of discomfort threshold of longitudinal acceleration and jerk was investigated by 
Bae et al. (2020) and reported to be around 2m/s2 and 0.9m/s3 respectively. Moon and Yi 
(2008) characterised the braking comfort within -2m/s2 while maximum acceleration and 

deceleration values for human driving data were reported to be -5.08m/s2 and 3.07m/s2, 
respectively. Bifulco et al. (2019) proposed the frame of a novel longitudinal control 
strategy for AVs with vehicle to vehicle (V2V) communications and set the ego vehicle 
parameters as follows: maximum acceleration and deceleration at 2 m/s2 and 3m/s2, 
respectively, and minimum headway at 1.1s. Lastly, Fleming et al. (2018) suggested a set 
of parameters of driving behaviour for user acceptance of advanced driver assistance 
systems (ADAS). The driver model included minimum time headway (0.7s), maximum 
desired longitudinal acceleration (4m/s2) and maximum desired longitudinal deceleration 

(5m/s2). 

Lane Change Behaviour 

For successful lane changes, the intervehicle distance plays a crucial role especially from 
a safety aspect. Shorter distances tend to be a characteristic of aggressive drivers while 
more conservative drivers keep longer gaps. Several lane-change algorithms incorporated 

to warning systems or models for autonomous vehicles, have been developed, facilitating 
comfort and safety.  

Dang et al. (2015) proposed a coordinated adaptive control system with a lane-change 
assistance function. As intervehicle distances vary throughout the lane change process, 
they have designed Time headway and TTC parameters according to three scenarios: 
Response to Leading Vehicle Brake (RLVB), Cutting in (Cut-in), and Catching up Slower 

Vehicle Ahead (CSVA). The Time headway and TTC values for safety performance in the 
aforementioned concepts are 1.4s and 8.2s, 1.8s and 10.5s and 1.4s and 8.2s respectively. 

Cao et al. (2017) developed an optimal mandatory lane change decision model for 
autonomous vehicles in urban arterials and set as minimum safe headway 5.3s, a value 
representing the median value of an empirical distribution (Wakasugi, 2005).  

Keyvan-Ekbatani et al. (2016) gathered empirical data on the mandatory lane changes for 

10 drivers based on a test-drive. They have reported data of all drivers for both merging 
and diverging manoeuvres for different parameters that are indicatively presented in Table 
5 for southbound direction. 
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Table 5 empirical data on test-drive mandatory lane-changes 

Parameters 

Merging Diverging 

Median value 

Speed at merge (km/h) 89 81 

Time on merging lane 3 52 

Total time to pass merging area 23 5 

Although lane-change models are either mandatory or discretionary, Toledo et al. (2003) 
have estimated an integrated model that takes into account both considerations. Lane-
changing process includes choice of target lane and gap acceptance. Regarding the latter, 
the estimation results showed that critical gaps depend on the relative speeds of the lead 
and lag vehicle. 

Sourelli et al., (2022) explored the pull-out phase of overtaking, with focus on parameters 

affecting the lane change decision making and performance, to inform automated 
manoeuvring preferences. Results showed that lane change duration manoeuvre ranged 
from 2.4 to 10s with a mean of 5.88s and was influenced by parameters such as 
longitudinal speed, standard deviation of lateral acceleration, mean longitudinal 
acceleration, pull-out distance and others.  

Overtaking Behaviour 

For modelling overtaking behaviours, previous studies have tried to build overtaking 
controllers based on occupant comfort, vehicle stability, and safety. Shamir (2004) based 
the lane changing model with the view of minimising the total kinetic energy, through 
limiting to using the specified maximal acceleration during the lane change manoeuvre, 
creating stable and comfortable trajectory. Xu et al. (2019) incorporated both safety and 
comfort in their proposed two-layer overtaking control model. 

Overtaking manoeuvre involves passing a slower moving preceding vehicle in the same 
lane including pulling out of the lane followed by driving in straight line and then coming 
back/pulling into the same lane again. Since overtaking involves lane changing 
manoeuvres, the control logic can include the parametric considerations for lane changing. 
In this regard, Chae et al. (2021) developed an algorithm based on investigating real-world 
human driving data. Safety indices were used in the algorithm for defining lane changing 
behaviours, which were based on investigating the data on driver interaction with 

surrounding vehicles when changing lane (Figure 1). 
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Figure 1: Concept of safety distances: (a) in the lane keeping situation and (b) in the lane change situation 

(Chae et al, 2021) 

 

Safe distance in lane change situation (SDLC) can be defined through the following 
equation: 

𝑆𝐷𝐿𝐶 = {
max[(𝑣𝑥,   𝑒𝑔𝑜 − 𝑣𝑥,   𝑠𝑖𝑑𝑒), 0] ∗ 𝜏𝐿𝐶,   1 +  max[𝑣𝑥,   𝑒𝑔𝑜 ∗ 𝜏𝐿𝐶,   2 , 𝑐𝐿𝐶] , 𝑖𝑓 ∆𝑝𝑥,𝑠𝑖𝑑𝑒 > 0

max[(𝑣𝑥,   𝑠𝑖𝑑𝑒 − 𝑣𝑥,   𝑒𝑔𝑜), 0] ∗ 𝜏𝐿𝐶,   1 + max[𝑣𝑥,   𝑠𝑖𝑑𝑒 ∗ 𝜏𝐿𝐶,   2 , 𝑐𝐿𝐶] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 
Where: 

side =the vehicle on the side lane,  

Δpx= longitudinal relative position from the ego vehicle,  

𝜏 LC, 1 =Time gap for the relative velocity of lane change,  

𝜏 LC, 2 =Time gap for the minimum clearance of lane change, and  

cLC =minimum clearance of lane change 

Figure 2 shows velocity changes from driving data under lane change situations for ego 
and the side vehicles. Each lane change event is presented through a connected line where 

start of a lane change is marked with circle and end with cross. 

 

Figure 2: Driving data in lane change situation: (a) relative velocity to clearance and (b) relative velocity to TG. 

(Chae et al, 2021) 

Table 6 presents values of the safe distance parameters determined from the driving 
data considering some margin on the boundary values. 
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Table 6: Parameters of safe distance (Chae et al, 2021) 

Symbol Value Symbol Value 

𝜏𝐿𝐾 1.36 s 𝜏𝐿𝑐,1 1 s 

𝑐𝐿𝐾 4 m 𝜏𝐿𝑐,2 0.5 s 

  𝑐𝐿𝐶 12m 

Look-ahead distance 

The look-ahead distance is also essential when modelling lateral vehicle behaviour. Look-

ahead relates to connectivity in terms of anticipation of lane change when coming to a 
junction or incident. In the early 90s, the control concepts based on look-ahead systems 
were created to improve the efficiency and performance of longitudinal and lateral vehicle 
control systems (Atoui et al., 2021). The look-ahead systems measure the lateral 
displacement in front of the vehicle using sensors such as machine vision, radar, and LiDAR 
(Atoui et al., 2021). There have been extensive studies focused on using look-ahead 
measurement for automated steering control (Ozguner et al., 1995; Marino et al., 2011; 

Nguyen et al., 2017), the purpose of the Levitate project is to identify the acceptable range 
of look-ahead distance as well as min-max values in terms of stability, safety and comfort 
lane change performance for automated vehicles.  

Several studies have been carried out to determine the optimal look-ahead distance 
adjustment with respect to vehicle speed. Pendleton et al. (2017) indicated that with lower 
speed and smaller look-ahead distance, the vehicle is anticipated to track the path closely, 

and oscillatory behaviour is also expected; while at higher speeds, when the look-ahead 
distance is greater, the vehicle is intended to track the path smoothly, but this will cause 
the cutting corner issue that the vehicle moves inside the corner instead of around it. Shan 
et al. (2015) also indicated that the vehicle would gradually converge on the path with less 
oscillation if the look-ahead distance is longer, whereas the shorter distance would 
converge quickly but with more oscillation. Yi et al. (2015) presented a new algorithm to 
improve vehicle trajectory prediction for the Adaptive Cruise Control (ACC) system via 
CarSim and MATLAB/Simulink. The results showed that the prediction errors rise as the 

look-ahead distance increases. Another study conducted by the authors proposed the 
kinematic vehicle lateral motion model based on a lane keeping system that considered 
look-ahead distance (Kang et al., 2015). In the study, the look-ahead distance was 
formulated as a linear function of the vehicle speed, and it was validated using CarSim and 
MATLAB/Simulink computational simulation results. The results showed that the look-
ahead distance minimised the oscillation in control performance at torque and steering 
wheel angle. 

A study conducted by Hasegawa and Konaka (2014) proposed a multiple look-ahead 
distance scheme that can estimate the lateral deviation, the heading of the vehicle, and 
the curvature of the reference. The simulation results indicated that the proposed control 
approach could meet the control objective for the references with varying radii. 

Roselli et al. (2017) looked at the path tracking control with look-ahead distance for lane 

keeping in autonomous vehicles. The Double Lane Change (DLC) manoeuvre is used to 
investigate the effect of the look-ahead distance via the CarSim simulation. Figure 3 
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presents the results of a DLC manoeuvre carried out at 65 km/h with three look-ahead 

distances. The results indicated that the longer the look-ahead distance, the earlier the car 
would begin to steer. The look-ahead distance has significantly influenced path tracking 
and lateral acceleration. For example, when the look-ahead distance is too short, the car 
will begin to steer too late, resulting in a significant error generated on the first corner. 
Meanwhile, a shorter look-ahead distance generates higher acceleration because the 
corner is perceived later, and fast steering is required to track the path. When the look-
ahead distance is too large, the manoeuvre is smoothed, and the tyres are pushed further 
away from the friction limit. 

 

Figure 3: Look-ahead distance influence (Roselli et al., 2017)  

Sever et al. (2018) have made efforts to investigate the allowable range of look-ahead 
distance for autonomous vehicle control. A nonlinear vehicle model with three degrees of 
freedom was being used in the simulation studies. A range of values from 2 to 25 meters 
for look-ahead distance was applied for peak values of lateral acceleration and sideslip 
angle and compared to the safety/comfort analysis that was performed with automated 
lane change manoeuvre. The study suggested that the crucial values of look-ahead 
distance are 8m for 80 km/h, 14 m for 100 km/h and 21 m for 120 km/h, respectively. 

Behaviour at Unsignalised Intersection 

Vehicles passage at unsignalised intersections is primarily defined through models based 
on gap acceptance which involve using some threshold value of time gap on major road 
(time that elapses between two successive vehicles). 
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With regard to defining autonomous vehicles behaviour at un-signalised junctions, Mihály 

et al (2020) used a multi-criteria approach in their proposed controller for collision free 
movement of vehicles at the intersection considering minimising travel time and 
consumption of energy while ensuring safe (collision free) movement of vehicles at the 
intersection. The controller can also be adjusted depending on the priorities and traffic 
characteristics at a location. 

Summary 

There is no real-world data available on fully automated vehicles to completely validate 
the findings reported by various research studies with underlying assumptions on CAVs 
behaviours. However, considering various presumed and expected characteristics of CAVs 
such as improved sensing and cognitive abilities, enhanced situational awareness, and with 
the integration of V2V and V2I communication, the future connected and automated 
vehicles can be considered to have more efficient and safer operations on road than 
human-driven vehicles through better/efficient decision-making, higher anticipation of 

upcoming lane change and any incidents ahead. Various kinds of research studies have 
based their investigations considering such characteristics that will promote efficient and 
safer traffic operations.  

The key driving parameters include, but are not limited to, time headway, 
acceleration/deceleration characteristics, lane-change and overtaking behaviours, gap 
acceptance behaviours at unsignalised intersections, anticipation of lane change and 

incidents ahead, decision making due to V2V and V2I communication key characteristics, 
with the advancements in autonomous vehicle technology, giving them enhanced sensing 
and cognitive abilities, such vehicles can be considered to have higher anticipation of 
upcoming lane change and any incidents ahead. 
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3  Behavioural Models in Aimsun 

Next 

To model the behaviours of different vehicle types, including human-driven vehicles and 
CAVs, various parameters of the behavioural models implemented in the Aimsun Next 

traffic simulation software are considered. The following sub-sections from 3.1-3.4 provide 
background information on various behavioural models in Aimsun Next, extracted from the 
software user's manual (Aimsun, 2021). 
 

3.1 Car-Following Model 

The car-following model implemented in Aimsun Next is based on the Gipps (Gipps, 
1981; Gipps, 1986) model. It has been developed by including model parameters which 
are not global but determined by the influence of local parameters depending on the “type 
of driver” (speed limit acceptance of the vehicle), the geometry of the section (speed limit 
on the section, speed limits on turns, etc.), the influence of vehicles on adjacent lanes, 
etc. It consists of two components, acceleration and deceleration. The first represents the 
intention of a vehicle to achieve a certain desired speed, while the second reproduces the 
limitations imposed by the preceding vehicle when trying to drive at the desired speed. 

This model states that the maximum speed to which a vehicle (n) can accelerate during a 
time period (t, t+T) is given by: 

𝑉𝑎(𝑛, 𝑡 + 𝑇) = 𝑉(𝑛, 𝑡) + 2.5𝑎(𝑛)𝑇 (1 −
𝑉(𝑛,𝑡)

𝑉∗(𝑛)
) √0.025 +

𝑉(𝑛,𝑡)

𝑉∗(𝑛)
                                                     (2) 

 
Where: 

 Va(n,t) is the speed of vehicle n at time t; 

 V*(n) is the desired speed of the vehicle (n) for current section; 
 a(n) is the maximum acceleration for vehicle n; 
 T is the reaction time 

 
At the same time, the maximum speed that the same vehicle (n) can reach during the 

same time interval (t, t+T), according to its own characteristics and the limitations imposed 
by the presence of the lead vehicle (vehicle n-1) is: 
 

𝑉𝑏(𝑛, 𝑡 + 𝑇) = 𝑑(𝑛)𝑇 + √𝑑(𝑛)2𝑇2 − 𝑑(𝑛) [2{𝑥(𝑛 − 1, 𝑡) − 𝑠(𝑛 − 1) − 𝑥(𝑛, 𝑡)} − 𝑉(𝑛. 𝑡)𝑇 −
𝑉(𝑛−1,𝑡)2

𝑑′(𝑛−1)
]    (3) 

where: 

 d(n) ( < 0) is the maximum deceleration desired by vehicle n; 
 x(n,t) is position of vehicle n at time t; 

 x(n-1,t) is position of preceding vehicle (n-1) at time t; 
 s(n-1) is the effective length of vehicle (n-1); 
 d’(n-1) is an estimation of vehicle (n-1) desired deceleration. 

 
The speed for vehicle n during time interval (t, t+T) is then the minimum of these 

two speeds: 
 

𝑉(𝑛, 𝑡 + 𝑇) = 𝑚𝑖𝑛{𝑉𝑎(𝑛, 𝑡 + 𝑇), 𝑉𝑏(𝑛, 𝑡 + 𝑇)}                                                                           (4) 
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The position of vehicle n in the current lane is then updated using the integration 

of the speed. Acceleration and deceleration phases are integrated using different methods. 
The acceleration phase is integrated using the rectangle method corresponding to the 
following equation: 

 
𝑥(𝑛, 𝑡 + 𝑇) = 𝑥(𝑛, 𝑡) + 𝑉(𝑛, 𝑡 + 𝑇)𝑇                                                                                   (5) 
 
while the deceleration phase integration uses the trapezoid method following this equation: 

 
𝑥(𝑛, 𝑡 + 𝑇) = 𝑥(𝑛, 𝑡) + 0.5(𝑉(𝑛, 𝑡) + 𝑉(𝑛, 𝑡 + 𝑇))𝑇                                                                  (6) 

 
The estimation of the leader’s deceleration is a function of the “Sensitivity Factor” 

parameter α defined per vehicle type. The model is then: 
 
𝑑′(𝑛 − 1) = 𝑑(𝑛 − 1) ∗ ∝                                                                                               (7) 

 

When α is < 1, the vehicle underestimates the deceleration of the leader and as a 
consequence the vehicle becomes more aggressive, decreasing the gap ahead of it. When 
α is greater than 1, the vehicle overestimates the deceleration of the leader and as a 
consequence the vehicle becomes more careful, increasing the gap ahead of it.  

 
The model also includes the minimum headway between leader and follower as a 

restriction of the deceleration component. This constraint is applied before updating the 
position X(n,t+T).  
 
 

The minimum headway constraint is defined as: 
 

   𝑥(𝑛 − 1, 𝑡 + 𝑇) – [𝑥(𝑛, 𝑡) + 𝑉(𝑛, 𝑡 + 𝑇)  ∗ 𝑇] < 𝑉(𝑛, 𝑡 + 𝑇) ∗ 𝑀𝑖𝑛𝐻𝑊(𝑛)𝑇ℎ𝑒𝑛
𝑖𝑓

                                   (8) 

 
and 

𝑉(𝑛, 𝑡 + 𝑇)  =  
𝑥(𝑛−1,𝑡+𝑇) – 𝑥(𝑛,𝑡)

𝑀𝑖𝑛𝐻𝑊(𝑛)+𝑇
                                                                                             (9) 

 
where:  

 x(n,t) is position of vehicle n at time t;  
 x(n-1,t) is position of preceding vehicle (n-1) at time t;  
 MinHW(n) is the minimum headway of vehicle (n) between it and vehicle (n+1).  

 
The car-following model is such that a leading vehicle, i.e. a vehicle driving freely, 

without any vehicle affecting its behaviour, would try to drive at its maximum desired 
speed. Three parameters are used to calculate the maximum desired speed of a vehicle 
while driving on a particular section or turn, two are related to the vehicle and one to the 
section or turn:  
 

 Maximum desired speed of the vehicle i: Vmax (i)  
 Speed acceptance of the vehicle i: θ (i)                                                                        

 Speed limit of the section or turn s: Slimit (s)  
 
The speed limit for a vehicle ion a section or turn s, is calculated as: 
 
Slimit(i, s)  = Slimit(s) ∗ θ (i)                                                                                                    (10) 

 

and 
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Vmax(i, s)  = min {Slimit(i, s), Vmax(i)}                                                                                        (11) 

 

This maximum desired speed Vmax(i,s) is the same as that referred to above, in 
the Gipps car-following model, as V*(n). 

3.1.1 Modified Model for Congested Highways 

The speed predicted by the Gipps car following model at high density does not 
match the speeds observed under congested conditions in highways. A modified model is 
used to adjust the dependency of the speed as a function of density. This is achieved by 
changing the dependency of the inter-vehicular distance (Clearance) as a function of speed 
which is simply linear in the Gipps model. The equation from Gipps for the clearance 
between vehicles is: 

𝐶𝑙𝑟(𝑡) =
𝑉(𝑛−1,𝑡)2

2𝑑(𝑛−1)
−

𝑉(𝑛,𝑡)2

2𝑑(𝑛)
+ (0.5𝑉(𝑛, 𝑡) + 𝑉(𝑛, 𝑡 + 𝑇) ∗ 𝑇)                                                            (12) 

 
 
And at constant speed and maximum deceleration, this simplifies to: 
 
𝐶𝑙𝑟(𝑡) = 1.5𝑉(𝑛, 𝑡)𝑇                                                                                                          (13) 

 
 

The specific model implemented to overcome the linear dependency between the 
inter-vehicular distance and the speed: 
 

𝐶𝑙𝑟(𝑡) =
𝑉(𝑛−1,𝑡)2

2𝑑(𝑛−1)
−

𝑉(𝑛,𝑡)2

2𝑑(𝑛)
+ (1 − 𝛼)(0.5𝑉(𝑛, 𝑡) + 𝑉(𝑛, 𝑡 + 𝑇) ∗ 𝑇) + 𝛼 (0.5𝑉(𝑛, 𝑡) + 𝑉(𝑛, 𝑡 + 𝑇) ∗

(√
𝑉(𝑛,𝑡)

𝑉𝑑𝑒𝑠
𝑇))                                                                                                                           (14) 

 
Implies 
 

𝑉𝑛(𝑡 + 𝑇) = 𝑑(𝑛)𝑇∗ + √(𝑑(𝑛)𝑇∗)2 − 𝑑(𝑛) [2𝐶𝑙𝑟(𝑡) − 𝑉(𝑛. 𝑡)𝑇∗ −
𝑉(𝑛−1,𝑡)2

𝑑′(𝑛−1)
]                                   (15) 

 
Where: 
 

𝑇∗ = 𝑇 (1 + 𝛼 (1 − √
𝑉(𝑛,𝑡)

𝑉𝑑𝑒𝑠
))                                                                                                 (16) 

 
 
And at constant speed and maximum deceleration, this simplifies to: 
 

𝐶𝑙𝑟(𝑡) = 1.5𝑉(𝑛, 𝑡)𝑇 (1 + 𝛼 (1 − √𝑉(𝑛, 𝑡)))                                                                                    (17) 
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3.1.2 Car following parameters  

The Car-following determines the clearance between leader and follower. The main 
behavioural parameters to control are:  

 Reaction Time  
o There are three different reactions times in microscopic simulation: Reaction 

time: This is the time it takes a driver to react to speed changes in the preceding 

vehicle. Reaction time at stop: This is the time it takes for a stopped vehicle to 
react to the acceleration of the vehicle in front. Reaction time at traffic light: 
This is the time it takes for the first vehicle stopped after a traffic light to react 
to the traffic light changing to green.  

 Speed acceptance (see equation 9)  
o This parameter can be interpreted as the ‘level of goodness’ of the drivers or 

the degree of acceptance of speed limits. When is greater than 1 means that 
the vehicle will take as maximum speed for a section a value greater than the 
speed limit, while when is lower than 1 means that the vehicle will use a lower 
speed limit.  

 Sensitivity Factor (see equation 6)  
o In the deceleration component of the car-following model, the follower makes 

an estimation of the deceleration of the leader using the sensitivity factor  
 Aggressiveness  

o The aggressiveness parameter modifies the relationship of the inter-vehicle 

distance as a function of speed. This distance is simply linear in the Gipps model 
and does not correspond to observed behaviour under congested highway 
conditions. 

 Stop and Go 
o This option allows a vehicle to adjust how it uses the aggressiveness value. If 

the option is ticked the value +a is used during deceleration and of –a during 
acceleration. Hence, assuming a is positive, the gap between vehicles will be 
larger during acceleration than deceleration for the same speed. 

 

3.2 Lane Changing Model 

The lane-changing model can also be considered as a development of the Gipps 
Lane changing model. Lane change is modelled as a decision process, analysing the 
necessity of the lane change (such as for turn manoeuvres determined by the route), the 
desirability of the lane change (to reach the desired speed when the leader vehicle is 
slower, for example), and the feasibility of the lane change depending on the position of 
the vehicle in the road network with respect to the lane geometry and adjacent vehicles. 
The lane-changing model is a decision model that approximates the driver’s behaviour as 
follows at each vehicle update:  

 Is it necessary to change lanes? This depends on several factors: the turning options 
from the current lane, the distance to the next turn and the traffic conditions in the 

current lane described by speed and queue lengths.  

 Is it desirable to change lanes? This depends on whether there will be any 
improvement in the traffic conditions for the driver as a result of lane changing. 
This improvement is measured in terms of speed and distance. If the speed in the 
target lane is faster compared to the current lane, or if the queue is shorter by 
sufficient margin, then it is desirable to change lanes.  

 Is it possible to change lanes? This requires that there is an adequate gap to make 
the lane change. This calculates both the braking imposed by the future 
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downstream vehicle to the lane-changing vehicle and the braking imposed by the 

lane-changing vehicle to the future upstream vehicle. If both braking levels are 
acceptable, then lane changing is possible.  

To represent the driver’s behaviour in the lane-changing decision process, three different 
zones are considered, each one corresponding to a different lane changing motivation.  

 Zone 1: The lane-changing decisions are mainly governed by the traffic conditions 
of the lanes involved. To measure the improvement that the driver will get from 

changing lanes, several parameters are considered: The desired speed of driver, 
the speed and distance of current preceding vehicle, speed and distance of future 
preceding vehicle in the destination lane. The model implemented in this zone is 
the overtaking manoeuvre model.  

 Zone 2: This is the intermediate zone. Vehicles driving in the “wrong” lane (i.e. 
lanes where the desired turn movement cannot be made) tend to get closer to the 
correct side of the road from which the turn is allowed. Vehicles looking for a gap 

try to adapt their speed to find gaps located either downstream or adjacent to them.  

 Zone 3: Vehicles are urgently trying to reach their valid lane, looking for gaps 
upstream and reducing speed, if necessary, even coming to a complete stop in 
order to make the lane change possible.  

The lane changing of each vehicle at any section has five aspects:  

o Target Lanes calculation  

o Vehicle behaviour considering the target lanes 

o Gap Acceptance model for Lane Changing  

o Target Gap and Cooperation 
 

3.2.1 Target Lanes calculation  

The calculation of the Target Valid Lanes is based on the traffic conditions present 
in the section, the turn lanes specified for next junction, and the possible obstacles on the 
path to the junction including incidents, compulsory reserved lanes, closed lanes, turn 
closures and the presence of a public transport stop, in case of a public transport vehicle. 
All elements have a visibility distance defined as distance zone 1 and distance to zone 2.  
 

3.2.2 Vehicle behaviour considering the target lanes  

The strategy is for every vehicle try to reach the set of target lanes defined by zone 
2 and 3 and the vehicle behaviour is as follows:  

 If the vehicle´s current lane is not within the subset of valid lanes determined by 
Zone 3 (TL3), the vehicle´s behaviour is determined by Zone 3.  

 If the vehicle´s current lane is within the subset of valid lanes determined by Zone 

3(TL3) but outside of the subset of valid lanes determined by Zone 2, the vehicle´s 
behaviour is determined by Zone 2(TL2).  

 If the vehicle´s current lane is within the subsets of valid lanes of both Zone 3 and 
2, the vehicle´s behaviour is determined by Zone 1(TL1).  

When the current lane of a vehicle is in a valid lane determined by zone 2 and 3, in 
general the behaviour is modelled as if it was in zone 1, i.e. overtaking manoeuvres may 

be initiated. There is an exception when a vehicle’s leader is affected by an obstacle (turn 
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movement, incident, lane closure, etc) that is closer than the vehicle’s own obstacle, then 

the evaluation to overtake the leader includes using a lane that can be outside of the subset 
of lanes given by Zone 2. 

3.2.3 Gap Acceptance model for Lane Changing 

The gap acceptance model is consistent with the car following model, in order to 
avoid artificial breakdown situations: 

 

𝑉𝑛(𝑡 + 𝜏𝑛) = 𝑏𝑛𝜏𝑛 + √(𝑏𝑛𝜏𝑛)2 − 𝑏𝑛 [2(𝑥𝑙(𝑡) − 𝑥𝑛(𝑡) − 𝑙𝑙 − 𝑠𝑛) − 𝑉(𝑡)𝜏𝑛 −
𝑉𝑙

2(𝑡)

𝑏𝑙
]                                   (18) 

 
and 
 

𝐶𝑙𝑟(𝑡) = (𝑥𝑙(𝑡) − 𝑥𝑛(𝑡) − 𝑙𝑙 − 𝑠𝑛) =
𝑣𝑙

2(𝑡)

2𝑏𝑙
−

𝑣𝑛
2(𝑡+𝜏𝑛)

2𝑏𝑛
+ (0.5𝑉𝑛(𝑡) + 𝑉𝑛(𝑡 + 𝜏𝑛))𝜏𝑛                                   (19) 

 
 

The Gipps car following model is stable i.e. it does not require decelerations above 
the maximum desired deceleration 𝛼𝑏𝑛, where 𝑏𝑛 is an estimation of the vehicle leader 
desired deceleration and 𝛼 is Aggressiveness level parameter. 

 
𝑉𝑛(𝑡 + 𝜏𝑛) ≥ 𝑀𝑎𝑥(𝑣𝑛(𝑡) + 𝛼𝑏𝑛𝜏𝑛;  0)                                                                                 (20) 

 
This is achieved when: 
 

𝐶𝑙𝑟(𝑡) ≥
𝑉𝑙

2(𝑡)

2𝑏𝑙
+ 0.5𝑉𝑛(𝑡)𝜏𝑛 + 𝑀𝑎𝑥 [0, −

𝑉𝑛
2(𝑡)

2𝑏𝑛
+ (1 − 0.5𝛼)𝛼𝑏𝑛𝜏𝑛

2 + (1 − 𝛼)𝑉𝑛(𝑡)𝜏𝑛]                          (21) 

 

The Gipps car following model avoids crashes when the Gap remains positive all 
over the deceleration process. This gives an additional constraint: 
 

𝐶𝑙𝑟(𝑡) ≥ 𝑀𝑎𝑥 [0,
𝑉𝑙

2(𝑡)

2𝑏𝑙
+ 0.5𝑉𝑛(𝑡)𝜏𝑛 + 𝑀𝑎𝑥 [0, −

𝑉𝑛
2(𝑡)

2𝑏𝑛
+ (1 − 0.5𝛼)𝛼𝑏𝑛𝜏𝑛

2 + (1 − 𝛼)𝑉𝑛(𝑡)𝜏𝑛]]              (22) 

 

This condition must be fulfilled to apply the Gipps car following model with a new 
leader when a vehicle changes lane (i.e. selection of possible leader and gap acceptance).  

Furthermore, applying this constrain at the end of the deceleration process i.e. when 
𝑉𝑛(𝑡 + 𝜏𝑛)  ≅ 𝑉𝑛(𝑡) ≅ 𝑉𝑙(𝑡) yields: 

 

𝐶𝑙𝑟(𝑡) =
𝑉𝑙

2(𝑡)

2𝑏𝑙
−

𝑉𝑙
2(𝑡)

2𝑏𝑙
+ 1.5𝑉𝑙(𝑡)𝜏𝑛 ≥ 0                                                                                 (23) 

 
And 
 

𝑏𝑙 ≤
𝑏𝑛

1−
3𝑏𝑛𝜏𝑛
𝑉𝑙(𝑡)

                                                                                                                        (24) 

 

 if the vehicle changes lane, the speed and position of the vehicles at time t+dt is 
evaluated: 
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 For the vehicles that are already updated, current speed and position is used. 

 For the others, the speed and position assuming that the vehicle changes lane at 
time 

 t+dt is evaluated. 

 The gap is acceptable if the physical quantities at time t+dt fulfils the three following 

 requirements: 

 the gaps are positive 

 the computed speeds are positive, 

 the decelerations imposed are smaller than α MaxDesiredDecel 

 Using the previous equations this can be achieved with one condition at time t that 
need to be fulfilled for both the upstream and downstream clearance distance: 

 

𝐶𝑙𝑟𝑈𝑝(𝑡) ≥ 𝑀𝑎𝑥 [0,
𝑉𝑙𝑐

2(𝑡)

2𝑏𝑙𝑐
+ 0.5𝑉𝑈𝑝(𝑡)𝜏𝑈𝑝 + 𝑀𝑎𝑥 [0, −

𝑉𝑈𝑝
2 (𝑡)

2𝑏𝑈𝑝
+ 𝛼𝑈𝑝(1 − 0.5𝛼𝑈𝑝)𝛼𝑏𝑈𝑝𝜏𝑈𝑝

2 + (1 −

𝛼𝑈𝑝)𝑉𝑈𝑝(𝑡)𝜏𝑈𝑝]]                                                                                                                (25) 

 
and 

 

𝐶𝑙𝑟𝐷𝑤(𝑡) ≥ 𝑀𝑎𝑥 [0,
𝑉𝐷𝑤

2 (𝑡)

2𝑏𝐷𝑤
+ 0.5𝑉𝑙𝑐(𝑡)𝜏𝑙𝑐 + 𝑀𝑎𝑥 [0, −

𝑉𝑙𝑐
2(𝑡)

2𝑏𝑙𝑐
+ 𝛼𝐷𝑤(1 − 0.5𝛼𝐷𝑤)𝑏𝑙𝑐𝜏𝑙𝑐

2 + (1 − 𝛼𝐷𝑤)𝑉𝑙𝑐(𝑡)𝜏𝑙𝑐]] 

(25) 
 

3.2.4 Target Gap and Cooperation  

To change lane, the target lane is searched for an adequate gap. The upstream 
vehicle of the gap must and be able to follow the vehicle that is looking for a gap using the 
crash free car following model or be willing to cooperate. The subject vehicle intending to 
change lane will then progressively adapt to the speed of the downstream vehicle using 
the two-leaders car following model with a negative gap if needed. When choosing an 
adjacent or backward gap, the vehicle intending to change lane will always have a speed 
that is lower than the one imposed by its current leader. To avoid this penalty, the lane 

changing vehicle can instead choose a forward gap if it is able to overtake the downstream 
vehicle before the forthcoming obstacle. Selecting a forward gap will however not cause it 
to exceed the Gipps car following speed imposed by its current leader. The percentage of 
upstream vehicles that cooperate in the lane changing model is defined for each section or 
vehicle type using the Lane Changing Cooperation parameter in the Road Type Editor or 
the Vehicle Type Editor. Note that upstream vehicles will only cooperate with requesting 
vehicles being in Zones 2 and 3; that is, vehicles for which the lane change is compulsory.  

The order of evaluation of gaps in each zone is:  

 Zone 1  

o 1st Adjacent gap  

 Zone 2  

o 1st Forward gap o 2nd Adjacent gap  

 Zone 3  
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o 1st Adjacent gap o 2nd Backward gap  

 

3.2.5 Overtaking Manoeuvre  

An overtaking manoeuvre takes place in Zone 1 when the vehicle is in its set of 
valid lanes and changes lane to pass another vehicle. In order to promote or discourage 
overtaking, there are two parameters:  

 Overtake Speed Threshold is the percentage of the desired speed of a vehicle below 
which the vehicle may decide to overtake. This means that whenever a vehicle is 
constrained to drive slower than Overtake Speed Threshold % of its desired speed, 
it will try to overtake. The default value is 90%. 

 Lane Recovery Speed Threshold is the percentage of the desired speed of a vehicle 
above which a vehicle will decide to get back into the adjacent slower lane. The 
default value is 95%.  

Therefore, if a vehicle with a desired speed of 100kph was to follow a vehicle at a 
speed < 90kph, it would try to overtake. Subsequently, when it achieved a speed > 95 
kph, it would return to its original lane It is recommended that the Lane Recovery Speed 
Threshold value is greater than Overtake Speed Threshold, otherwise some overtaking 
manoeuvres may be aborted as they start. Similarly, if these values are set too small, 
vehicles will not initiate an overtaking manoeuvre unless the speed gap is very large and 
would return to the slower lane too soon. Note that the sensitivity to these parameters is 

low. These two parameters may be edited from the Tables Window for a Dynamic 
Experiment, from the attributes of an experiment or may be set by vehicle type to override 
the default experiment parameters. 

3.2.6 Return to Lane after Overtake  

The tendency to move back to the slower lane after overtaking is determined by 

the road type, the specific road section, and by the Staying in Overtaking Lane parameter 
for a vehicle type. If the road section allows for Return to Inside lane After Overtaking, 
either set by the road type or modified for the specific road section. Then, after every lane 
change manoeuvre, a new value for the Keep Fast Lane boolean attribute for the vehicle 
is generated based on the Staying in Overtaking Lane percentage for the vehicle type. If 
this value is false, then the Lane Recovery Speed Threshold is ignored, and the vehicle will 
remain in the lane it used to overtake.  

3.2.7 Determine the side of the manoeuvre  

The roadside determines the overtaking manoeuvre according:  

 When a vehicle attempts to overtake another vehicle, it will try to do so using the 
adjacent left lane when driving on the right side, or the adjacent right lane when 

driving on the left.  
 When a vehicle is driving fast enough and wants to move back to the slower lane, 

it will try to go to the rightmost lane when driving on the right and to the leftmost 
lane when driving on the left.  
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3.3 Lane Changing parameters  

 Distance Zone Factor: The Distance Zone Factor is used to modify the distance 
zones used in the Lane Changing Model to determine where vehicles consider their 
lane choice for a forthcoming turn. The default distances are set in the Road Type 
and may be modified for each turn to reflect local conditions in the Turn Editor. The 
zone distances may then be modified by vehicle type to adjust where lane changes 
start to be considered and, if a range is given, to randomise behaviour for each 
vehicle of that type.  

 Cooperation: The cooperation value fines whether a vehicle creates a safe gap for 
another vehicle that changes lane to enter. 

 Overtake Speed  
o Overtake Speed Threshold is the percentage of the desired speed of a vehicle 

below which the vehicle may decide to overtake. This means that whenever 
a vehicle is constrained to drive slower than Overtake Speed Threshold % 
of its desired speed, it will try to overtake. The default value is 90%.  

o Lane Recovery Speed Threshold is the percentage of the desired speed of a 
vehicle above which a vehicle will decide to get back into the adjacent slower 
lane. The default value is 95%.  

 Aggressiveness: This parameter allows vehicles to enter shorter gaps without 
forcing the rear vehicle to brake, followed by a relaxation process to gradually 
recover the stability of the car following models. The aggressiveness % controls the 

sensitivity of a vehicle to the deceleration of the leader, determining how short can 
these gaps be. That is, if aggressiveness is set to 100% (which should not be used, 
it's the most extreme case) this means zero sensitivity, and the new allowed gap 
(at all speed situations) would be that needed at a stop situation (as if the vehicle 
was parking). An aggressiveness 0%, the full gap is used as described above, with 
no change in sensitivity. All intermediate values will make the gap shorter according 
to the aggressiveness % and also to the current speed of the leader. Aggressiveness 
applies to all lane changing manoeuvres that are not cooperative. This parameter 
may be set for a Road Type or may be adjusted by Vehicle Type.  

 Imprudent Lane Changing: This option determines whether vehicles can enter gaps 
that do not ensure car following stability. The vehicle changing lane, or its follower, 
might need to brake up to twice their maximum deceleration. Only vehicles where 
the vehicle type also has the ‘Imprudent lane changing’ activated will accept those 
gaps. 

3.4 Gap acceptance in give way behaviour  

3.4.1 Description  

A Gap-Acceptance model is used to model give way behaviour. This model 
determines whether a vehicle approaching an intersection can or cannot cross depending 
on the nearby vehicles with higher priority at the junction. This model takes into account 
the distance of vehicles to the hypothetical collision point, their speeds and their 
acceleration rates. It then determines the time needed by the vehicles to clear the 
intersection and produces a decision that also includes the level of risk of each driver. The 
gap required to make the manoeuvre is determined by the time spent waiting for a gap to 
appear in the opposing flows. The initial value is MaximumGap; the final value is 
MinimumGap. After waiting for GapReductionStartTime * MaximumGap seconds, the gap 
is progressively reduced, reaching the minimum gap value after GapReductionEndTime * 

MaximumGap seconds.  This is illustrated in Figure 4.  
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Figure 4:  Maximum Give Way Time (Aimsun, 2021) 

The following algorithm, illustrated in Figure 5 is applied in order to determine whether a 
vehicle approaching a Give Way sign can cross or not: Given a vehicle (VEHY) approaching 

a Give Way junction,  

1. Obtain the closest higher priority vehicle (VEHP)  
2. Determine the Theoretical Collision Point (TCP)  
3. Calculate time (TP1) needed by VEHY to reach TCP  
4. Calculate estimated time (ETP1) needed by VEHP to reach TCP  
5. Calculate time (TP2) needed by VEHY to cross TCP  

6. Calculate estimated time (ETP2) needed by VEHP to clear the junction  
7. If TP2 (plus a safety margin) is less than ETP1, vehicle VEHY has enough time to 

cross; therefore, it will accelerate and cross  
8. Else, if ETP2 (plus a safety margin) is less than TP1, vehicle VEHP will have already 

crossed TCP when VEHY reaches it, then search for the next closest vehicle with a 
higher priority, it becomes VEHP and go to step 2  

9. Else, vehicle VEHY must give way, decelerating and stopping if necessary. 
 
 

 

Figure 5: Gap acceptance in give way behaviour (Aimsun, 2021) 
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Safety Margin Factor: In the gap acceptance calculations to determine when a vehicle can 

move at a priority junction, the safety margin is set for the Road Type, may be modified 
for a specific turn to reflect the road geometry and may further be adjusted by vehicle 
type. This parameter provides a multiplier, with a truncated normal range. 

3.5 Parameters to model in Aimsun Next 

Based on the above presented behavioural models and findings from literature as well as 
discussions with experts, the following parameters in Table 7 were used to model 

behaviours of human-driven vehicles and CAVs in Aimsun Next. 
 

Table 7: Human-driven and CAVs parameters in Aimsun Next 

Driving Model Parameter Description 

 

 
 

 
 

 
 

 
 

 
 

 
 

Car-following 
model 

Time gap  

(In Aimsun Next, reaction time 
along with sensitivity factor, affects 

time gap) 

Time that elapses between rear end of the lead 

vehicle and front bumper of following vehicle. 

Max. acceleration  

  

Maximum acceleration that a vehicle can 

achieve under any circumstances 

Normal deceleration  

  

Maximum deceleration a vehicle can use under 

normal conditions 

Max. deceleration  
  

Maximum deceleration a vehicle can use under 
special circumstances, such as emergency 

braking.  

Clearance  The distance a vehicle keeps between itself and 

the leading vehicle when stopped. 

Safety margin factor It generates give-way behaviour at 
unsignalized junctions. The higher the value 

indicates more conservative behaviour. 

 

 
Lane-changing 

model 

Look ahead distance factor 

(anticipation of lane change) 

It determines where the vehicles consider their 

lane change 

Overtaking It controls overtaking manoeuvres when a 
vehicle changes lane to pass another. 
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4 Modelling CAV Behaviours  

4.1 Driving Characteristics 

With incremental development towards perfection in automation, the concept of first- and 
second-generation systems was introduced. Both types are assumed to be fully automated 

vehicles with level 5 automation. The main idea behind modelling these two types is based 
on the assumption that technology will advance with time. Therefore, 2nd Gen CAVs will 
have improved sensing and data handling capabilities, decision making, driver 
characteristics, and anticipation of incidents etc. In general, the main assumptions on CAVs 
characteristics are as follows: 

 1st Generation: Sensing and computational capability is limited. These vehicles are 
considered to be conservative in their driving characteristics whereby they leave 
larger gap, have higher anticipation of lane change and incidents etc. (relating to 
connectivity) than human driven vehicles and takes more time during give way 
situations. 

 2nd Generation: Sensing and computational capability is advanced, can use data 
fusion and is more confident in taking decisions. These vehicles are considered to 
appear more aggressive in their driving characteristics whereby they leave smaller 
(compared to human driven vehicles) headway to preceding vehicle, have higher 

anticipation of lane change or incidents etc. (relating to connectivity) than human 
driven vehicles and 1st Generation CAVs, and takes less time during give way 
situations. 

It is considered that all AVs will be connected. Decision-making by using information 
received using connectivity in 1st generation would be limited so some behaviours will be 
limited due to this. 2nd generation vehicles are considered to be advanced in decision-
making by using information using connectivity and so, this will be reflected in their driving 
behaviours. The CAV driving behaviours developed in the Levitate project is presented in 
Table 8 below.  

Table 8: CAV driving behaviour in Levitate project 

Description 1st Generation 2nd Generation  

Sensing and cognitive 

ability 

Limited to on-board sensing 

instruments and analytics capability is 
limited by on-board computing power 

Improved on-board capabilities and 

enhanced by comprehensive traffic 
management system 

Decision-making Limited to situational awareness given 
by on-board instruments. 

Advanced capability due to enhanced 
situational awareness aided by 

comprehensive traffic management 
system  

Driving characteristics Executes manoeuvres leaving greater 

time and space compared to human-
driven vehicles allowing for system 

errors 

Executes manoeuvres leaving less 

time and space compared to human-
driven vehicles since system errors are 

reduced 

Anticipation (lane change, 
incidents, etc.) relating to 

connectivity 

Earlier than human-driven Later than human-driven 



   
 

27 

The default driving logic in Aimsun Next is based on Gipps model (Gipps, 1981; Gipps, 

1986). Various parameters of the driving logic were adjusted to implement human-driven 
vehicle (HDV) and CAV behaviours.  The assumptions on CAV parameters and their values 
were based on a comprehensive literature review in Section 2. Some guidance on the 
behaviours was also obtained through studies on ACC and CACC systems. The key 
parameters which were changed to model the driving behaviours of CAVs along with the 
associated assumptions are as presented in Table 9. 
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Table 9: HDV and CAV Parameters 

Parameter Description Human-
Driven 
Vehicle 

1st Generation 
CAV 

2nd Generation 
CAV 

Time gap  

In Aimsun 
Next, reaction 

time along with 
sensitivity 

factor, affects 
time gap 

Time that elapses 

between rear end of 
the lead vehicle and 

front bumper of 
following vehicle. 

Lesser than 1st 

Gen CAV 

More than HDVs  Shorter than HDVs 

and 1st Gen CAVs  

Max. 

acceleration  
  

maximum 

acceleration that a 
vehicle can achieve 

under any 
circumstances 

Larger average 

acceleration 
and range 

Lesser average 

acceleration and 
range than HDVs 

(comfortable ride 
experience) 

Lesser than HDVs 

and 1st Gen CAVs 
(comfortable ride 

experience) 

Normal 
deceleration  

  

maximum 
deceleration a vehicle 

can use under normal 
conditions 

Larger 
variation in 

deceleration 

Lesser variation in 
deceleration than 

HDVs (comfortable 
ride experience) 

Lesser variation in 
range than HDVs 

(comfortable ride 
experience) 

Max. 

deceleration  
  

Maximum 

deceleration a vehicle 
can use under special 

circumstances, such 
as emergency 

braking.  

Less than CAVs More than HDVs More than HDVs and 

1st Gen CAVs 

Clearance  The distance a vehicle 
keeps between itself 

and the leading 
vehicle when stopped. 

More variability 
in clearance 

Lesser variation in 
clearance than HDVs 

  
Lesser variation in 

clearance than HDVs 

Safety margin 
factor 

It generates give-way 
behaviour at 

unsignalized 
junctions. The higher 

the value indicated 
more cautious 

behaviour. 

Lesser than 1st 
Gen CAV 

Higher than HDVs,  
(cautious behaviour) 

Shorter than HDVs 
(assertive behaviour) 

Look ahead 
distance factor 

(anticipation of 
lane change) 

It determines where 
the vehicles consider 

their lane change 

More variation 1st generation CAVs 
will consider changing 

lane earlier than 
human-driven 

vehicles would, due to 
limited situational 

awareness 

2nd generation CAVs 
will consider 

changing lane later 
than human-driven 

vehicles would, due 
to advanced 

situational 
awareness 

Overtaking It controls overtaking 

manoeuvres when a 
vehicle changes lane 

to pass another. 

Defaults in 

Aimsun Next 

conservative driving 

behaviour. Same logic 
as of HDVs 

Aggressive lane 

change logic 
compared to human-

driven vehicles, 

Based on the literature findings and discussions in traffic micro-simulation meetings, the 

following are suggested values for some of the behaviours of passenger cars. 
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4.2 Car-following 

Human driven vehicles need to keep time gap of 1.2 (± 0.4) s in car-following situation. 
1st generation vehicles need to keep time gap of 1.3 (± 0.2) s in car-following situation. 

2nd generation vehicles need to keep time gap of 0.6 (± 0.1) s in car-following situation. 

 
The time gap is translated into reaction time (RT) in the car-following model in Aimsun 

Next as follows: time gap = 1.5 x RT + constant (where constant is in standstill = clearance). 

The derived reaction times to be introduced in Aimsun Next are the following: 

 
 Human driven vehicles: 0.80 (± 0.26) s in car-following situation. 

 1st generation vehicles: 0.90 (± 0.13) s in car-following situation. 

 2nd generation vehicles: 0.40 (± 0.06) s in car-following situation. 

 
The deviation for the reaction times can be introduced by defining for each vehicle type in 

the experiment settings (i.e., Human-driven, 1st and 2nd generation vehicles) a different 
distribution of reaction time, associating a probability between 0 - 1.0. The reaction times 
for the deviation need to be a multiple of the simulation step. 
  
The values are rounded off and adjusted to be consistent for a simulation step of 0.1s. 
Since a range of reaction times will be provided, it is recommended to use a small 
simulation step common for all reaction times, e.g., 0.1, to be consistent with the 
deviations. The smaller the simulation step, the longer the simulation time. 

 
Regarding the sensitivity factor, this parameter is applied in the calculation of the 
deceleration of the leader and is used to indicate whether the vehicle underestimates or 
overestimates the deceleration of the leader. The recommendation is to keep this factor to 
its default value (i.e., same as for human-driven vehicles) as it will add bias on top of the 
effect due to the adjustment of the reaction time parameter values. Adjustment of this 
parameter could be considered at a later stage if additional effects in the car-following and 
gap acceptance model are to be investigated.  
 
General recommendation:  In order to observe an impact on the time gap and achieve the 
desired ranges, the reaction time is the main parameter to be adjusted and is independent 
of the speed. Other parameters that affect the gap, such as the maximum acceleration and 
sensitivity factor depend on the speeds, therefore the evaluation of the impact on the gap 
would require further investigation and a sensitivity analysis.  
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4.3 Max. acceleration 

In general, autonomous vehicles are expected to have a more comfortable driving 
experience for passengers. 
 
The max. acceleration for human driven vehicles is set to be + 5 m/s² (± 2). 
The max. acceleration for 1st generation vehicles is set to be + 4.5 m/s² (± 1). 
The max. acceleration for 2nd generation vehicles is set to be + 3.5 m/s² (± 1). 
 

The maximum acceleration values can be given as input in the vehicle type parameters. 
This parameter is expected to affect the time gap. It involves mechanical characteristics 
of the vehicle together with the driving mode. The smaller the max. acceleration, the larger 
the time gap the vehicle will accept.  

 

4.4 Max. deceleration 

The max. deceleration for human driven vehicles is set to be - 5 m/s² (± 1) 
The max. deceleration for 1st generation vehicles is set to be - 7 m/s² (± 0.5) 
The max. deceleration for 2nd generation vehicles is set to be - 9 m/s² (± 0.5). 
 

4.5 Normal acceleration  

The normal acceleration for human driven vehicles is set to be + 5 m/s² (± 2 m/s²) 
The normal acceleration for 1st generation vehicles is set to be + 3 (± 1) m/s². 
The normal acceleration for 2nd generation vehicles is set to be + 3 (± 1) m/s². 
 
1st generation and 2nd generation vehicles are considered to follow driving profile that 
generates comfortable ride experience to the user. Therefore, typical acceleration is 
considered to be 3 m/s². Furthermore, the range in acceleration is considered to be shorter 

than human-driven vehicles. 
 
The normal acceleration cannot be set as an input value. It is an output from the Gibbs 
model as a function of the maximum acceleration and current speed. 
 

4.6 Normal deceleration 

 The normal deceleration for human driven vehicles is set to be - 3.4 m/s² (± 1 
m/s²) 

 The normal deceleration for 1st generation vehicles is set to be - 4 m/s² (± 0.5 
m/s². 

 The normal deceleration for 2nd generation vehicles is set to be - 3 m/s² (± 0.5 

m/s²) 

 
1st generation and 2nd generation vehicles are considered to follow driving profile that 
generates comfortable ride experience to the user. Therefore, typical deceleration is 
considered to be -4 for 1st generation and -3 m/s² for 2nd generation. Furthermore, the 
range in acceleration is considered to be shorter than human-driven vehicles. 

4.7 Minimum gap at standstill (Clearance) 

The minimum gap at standstill for human driven vehicles is set to be 1 m (± 0.5 m). 

The minimum gap at standstill for 1st generation vehicles is set to be 1 m (± 0.2 m). 
The minimum gap at standstill for 2nd generation vehicles is set to be 1 m (± 0.2 m). 
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4.8 Look ahead distance – lane change 

Look ahead relates to connectivity in terms of anticipation of lane change when coming to 
a junction or incident.  

1st generation CAVs will consider changing lane earlier than human-driven vehicle would, 
under the assumption that they will leave more time and space because of limited 
situational awareness compared to human-driven vehicles and to allow for system errors.  

 

2nd generation CAVs will consider changing lane later than human-driven vehicles would, 
under the assumption that they will leave less time and space because of advanced 
situational awareness compared to human-driven vehicles. 

This parameter refers to the Look-Ahead Distance Factor. The following values are used: 

 The look ahead distance factor for human driven vehicles is set to be between 

[0.8;1.2]. 
 The look ahead distance factor for 1st generation vehicles is set to be between 

[1.1;1.3]. 
 The look ahead distance factor for 2nd generation vehicles is set to be between 

[1;1.25]. 

It is recommended to keep the default value as this parameter will only have an effect in 
case of congested motorways.   

 

4.9 Overtaking 

Human-driven vehicles default lane change threshold is 90% and lane recovery threshold 
is 95%. 

1st generation vehicles are considered to have conservative driving behaviour but in the 
interest of traffic flow, they will follow same lane change logic as human-driven vehicles, 

i.e., 90% and 95% for lane change and lane recovery, respectively. 

2nd generation vehicles are considered to be well connected to traffic management system 
and they are considered to have greater level of information regarding other vehicles 
kinematics. Therefore, they will follow aggressive lane change logic compared to human-
driven vehicles, i.e., 85% and 95% for lane change and lane recovery, respectively. 

4.10  Behaviour at signalised junction 

It is true that human-driven vehicles anticipate signal change visually and also by prior 
knowledge of the intersection. Therefore, they start accelerating as soon as the traffic 
signal turns green. 

It relates to the reaction time at stops and reaction time at traffic lights. Different 
values are recommended for AVs compared to human-driven vehicles. For instance, 0.4s 

could be given for 2nd generation and 0.9s for 1st generation vehicles. The ranges for these 
parameters can be introduced with a distribution in the same way as the reaction times in 
the car-following described above. 
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4.11  Behaviour at unsignalised junction (Safety margin 

factor) 

Safety margin factor allows human-driven vehicles to wait at give way junctions if the 
vehicles consider to meet at theoretical collision point. Table 10 shows that 1st generation 
vehicles can be considered to be conservative and leave longer gap compared to human-
driven vehicles, i.e., 25% higher. In case of 2nd generation, because they are considered 
to be confident in driving manoeuvres and therefore, they will leave smaller gap compared 

to human-driven vehicles, i.e., 25% lower. 
 
 

Table 10: Human-driven and CAVs gap acceptance at unsignalised junction 

 Human-

driven 

1st 

generation 

2nd generation  

Gap acceptance at 

unsignalised 
junctions 

 

Safety 

margin 
factor = 1 

Safety margin 

factor = higher 
than human-

driven 
([1,1.25]) 

Safety margin factor = lower than human-driven 

([0.75,1]) 

 
 

4.12  Key Parametric Assumptions for Automated 

Passenger Cars 

 
The values range of the key driving behaviour indicators used within Levitate project is 
presented in Table 11 
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Table 11: CAV parameters to use in traffic microsimulation within LEVITATE 

Parameter Human-Driven 
Vehicle 

1st Generation  
CAV 

2nd Generation 
CAV 

Comment 

Reaction time in car 

following (Reaction 
Time) 

0.8 sec 0.9 sec 0.4 sec This parameter, along with sensitivity factor, 

affects time headway. This can be set under 
Experiment >> Reaction Time tab >> 

Reaction Time Settings. Be sure to choose 
option ‘Variable (Different for Each Vehicle 

Type). 

Max. acceleration 5 (3, 0.2, 7) 
Mean (min, dev, max) 

4.5 (3.5, 0.1, 5.5) 
Mean (min, dev, 

max) 

3.5 (2.5, 0.1, 4.5) 
Mean (min, dev, max) 

This can be set for Vehicle type under 
Microscopic Model >> Main tab. 

Normal deceleration 3.4 (2.4, 0.25, 4.4) 

Mean (min, dev, max) 

4 (3.5, 0.13, 4.5) 

Mean (min, dev, 
max) 

3 (2.5, 0.13, 3.5) 

Mean (min, dev, max) 

Same as above. 

Max. deceleration 5 (4.0, 0.5, 6.0) 

Mean (min, dev, max) 

7 (6.5, 0.25, 7.5) 

Mean (min, dev, 
max) 

9 (8.5, 0.25, 9.5) 

Mean (min, dev, max) 

Same as above. 

Clearance 1 (0.5, 0.3, 1.5) 

Mean (min, dev, max) 

1 (0.8, 0.1, 1.2) 

Mean (min, dev, 
max) 

1 (0.8, 0.1, 1.2) 

Mean (min, dev, max) 

Minimum gap at standstill. This can be set for 

vehicle type under Dynamic Models >> Main 
tab. 

Safety margin factor 1 [1;1.25] [0.75;1] This is generating give-way behaviour at 

unsignalised junctions. 

Look ahead distance 
factor 

[0.8;1.2] [1.1;1.3] [1;1.25] Also known as Distance Zone Factor. This is 
changed to emulate connectivity in the sense 

that AVs will have better knowledge of 
junctions and turnings so they will consider 

changing lanes earlier than human-driven 
vehicles. 

Overtaking Begin at 90%,  

Fall back at 95% 

Begin at 90%,  

Fall back at 95% 

Begin at 85%,  

Fall back at 95% 
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4.13 Key Parametric Assumptions for Automated Freight 

Vehicles 

For modelling the freight vehicles, primarily the following assumptions were made. 

 The “physical parameters” such as size, weight, acceleration, deceleration, etc. 
were taken from the default values of Aimsum Next. For “AV truck” we took it from 
“truck”, and for the “AV delivery van” we took it from “car” with slightly increased 
length. 

 The “behavioral parameters” such as car-following, headway, etc. were taken from 
the cautious AV / 1st gen AV cars with reduced values on max acceleration and 
deceleration. 

The details on each parametric value for human-driven and automated LGVs and HGVs are 
presented in Table 12 below. 
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Table 12: LGV and HGV parameters to use in traffic microsimulation within LEVITATE 

Vehicle 
Type 

Parameter 

WP6 WP7 WP5 (Truck) Mainroads modelling Guidelines (2021) 

(Truck) 

Mean Deviat
ion 

Minim
um 

Maxi
mum 

Mean Deviat
ion 

Minim
um 

Maxi
mum 

Mean Minimu
m 

Maxim
um 

Mean Deviatio
n 

Minimu
m 

Maximum 

  

  
  
  

  
LGV 

  
(Reaction 

time 
0.8s) 

Length (m)  7 2 5 9 6 0 6 8.50 -- -- -- 8.65 - 12.00 1.0 - 1.9 5.5 - 10.0 11.65 - 

14.5 

Width (m)  2.25 0.2 2 2.8 2.00 0 2.00 2.00 -- -- -- 2.4 - 2.5 0.0 2.4 - 2.5 2.4 - 2.5 

Max. desired 

speed (km/h)  

85 10 70 100 30 0 30 80 -- -- -- 100 - 110 5.0 - 5.5 80 - 99 110 - 121 

Clearance (m)  1.5 0.5 1 2.5 1.50 0.5 1.00 2.50 -- -- -- 2.0 - 3.0 0.15 - 

1.30 

0.50 - 

2.70 

3.30 - 3.80 

Max. 

acceleration 

(m/s2)  

2.00 0.5 1.5 2.5 1.00 0.5 0.6 1.80 1 0.6 1.8 1.50 - 

1.60 

0.15 - 

0.80 

0.80 - 

1.20 

1.80 - 2.40 

Normal 

deceleration 

(m/s2)  

3.50 1.00 2.50 4.8 3.50 1.00 2.5 4.8 -- -- -- 2.2 - 3.0 0.22 - 
0.30 

1.76 - 
2.00 

2.64 - 3.50 

Max. 

deceleration 

(m/s2)  

5.00 0.5 4.00 6.00 5.00 0.5 4.00 6.00 5 4 6 3.00 - 

5.00 

0.06 - 
0.50 

2.88 - 
4.00 

3.12 - 6.00 

Sensitivity factor  1.00 0 1.00 1.00 -- -- -- -- -- -- -- 1.00 0 1.00 1.00 

Safety Margin 

Factor 

1 0 1 1 1 0 1 1 -- -- -- -- -- -- -- 

Look-Ahead 

Distance Factor 

  0.8 1.2 -- -- 0.8 1.2 -- -- -- -- -- -- -- 

  
  

Length (m)  13 3 10 16 17 0 7.99 20.0 -- -- -- 8.65 - 

12.00 

1.0 - 1.9 5.5 - 10.0 11.65 - 

14.5 
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HGV 
  

(Reaction 
time 

0.8s) 
  

  

Width (m)  2.25 0.2 2 2.8 2.50 0 2.50 2.50 -- -- -- 2.4 - 2.5 0.0 2.4 - 2.5 2.4 - 2.5 

Max. desired 

speed (km/h)  

85 10 70 100 30 0 30 80 -- -- -- 100 - 110 5.0 - 5.5 80 - 99 110 - 121 

Clearance (m)  1.5 0.5 1 2.5 1.5 0.5 1 2.5 -- -- -- 2.0 - 3.0 0.15 - 

1.30 

0.50 - 

2.70 

3.30 - 3.80 

Max. 

acceleration 
(m/s2)  

1.5 0.5 1 2 3.5 0.2 2.0 5.0 -- -- -- 1.50 - 

1.60 

0.15 - 

0.80 

0.80 - 

1.20 

1.80 - 2.40 

Normal 

deceleration 
(m/s2)  

3.5 1 2.5 4.8 2.40 0.25 1.40 3.40 -- -- -- 2.2 - 3.0 0.22 - 

0.30 

1.76 - 

2.00 

2.64 - 3.50 

Max. 
deceleration 

(m/s2)  

5.00 0.5 4.00 6.00 4.00 0.5 3.00 5.00 -- -- -- 3.00 - 

5.00 

0.06 - 

0.50 

2.88 - 

4.00 

3.12 - 6.00 

Sensitivity factor  1.00 0 1.00 1.00 1.00 0 1.00 1.00 -- -- -- 1.00 0 1.00 1.00 

Safety Margin 
Factor 

1 0 1 1 1 0 1 1 -- -- -- -- -- -- -- 

Look-Ahead 
Distance Factor 

-- -- 0.8 1.2 -- -- 0.8 1.2 -- -- -- -- -- -- -- 

LGV-AV 
  

(Reaction 
time 

0.9s) 

Length (m)  7 2 5 9 6 0 6 8.5 -- -- -- 8.65 - 12.00 1.0 - 1.9 5.5 - 10.0 11.65 - 14.5 

Width (m)  2.25 0.2 2 2.8 2.00 0 2.00 2.00 -- -- -- 2.4 - 2.5 0.0 2.4 - 2.5 2.4 - 2.5 

Max. desired speed 
(km/h)  

85 10 70 100 30 0 30 80 -- -- -- 100 - 110 5.0 - 5.5 80 - 99 110 - 121 

Clearance (m)  1.5 0.1 1.3 1.7 1 0 1 1 -- -- -- 2.0 - 3.0 0.15 - 1.30 0.50 - 2.70 3.30 - 3.80 

Max. acceleration 
(m/s2)  

2 0.5 1.5 2.5 3.50 0.1 2.50 4.50 1 0.6 1.8 1.50 - 1.60 0.15 - 0.80 0.80 - 1.20 1.80 - 2.40 

Normal deceleration 
(m/s2)  

3.5 1.00 2.50 4.8 3 0.13 2.5 3.5 -- -- -- 2.2 - 3.0 0.22 - 0.30 1.76 - 2.00 2.64 - 3.50 
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Max. deceleration 
(m/s2)  

5.00 0.5 4.00 6.00 6 0.25 5.50 6.50 5 4 6 3.00 - 5.00 0.06 - 0.50 2.88 - 4.00 3.12 - 6.00 

Sensitivity factor  1.00 0 1.00 1.00 0.70 0 0.30 0.90 -- -- -- 1.00 0 1.00 1.00 

Safety Margin Factor 1.13 0 1 1.25 1.13 0 1 1.25 -- -- -- -- -- -- -- 

Look-Ahead Distance 
Factor 

-- -- 1.1 1.3 -- -- 1.1 1.3 -- -- -- -- -- -- -- 

HGV-AV 

  
(Reaction 

time 
0.9s) 

Length (m)  13 3 10 16 17 0 7.99 20 -- -- -- -- -- -- -- 

Width (m)  2.25 0.2 2 2.8 2.5 0 2.5 2.5 -- -- -- -- -- -- -- 

Max. desired speed 
(km/h)  

85 10 70 100 30 0 30 80 -- -- -- -- -- -- -- 

Clearance (m)  1.5 0.1 1.3 1.7 1 0.3 0.5 1.5 -- -- -- -- -- -- -- 

Max. acceleration 
(m/s2)  

1.5 0.5 1 2 3.5 0.1 2.50 4.50 -- -- -- -- -- -- -- 

Normal deceleration 
(m/s2)  

3.5 1 2.5 4.8 3 0.13 2.50 3.50 -- -- -- -- -- -- -- 

Max. deceleration 
(m/s2)  

5.00 0.5 4.00 6.00 6 0.25 5.50 6.50 -- -- -- -- -- -- -- 

Sensitivity factor  1.00 0 1.00 1.00 1 0 1 1 -- -- -- -- -- -- -- 

Safety Margin Factor 1.13 0 1 1.25 1.13 0 1 1.25 -- -- -- -- -- -- -- 

Loo-Ahead Distance 
Factor 

-- -- 1.1 1.3 -- -- 1.1 1.3 -- -- -- -- -- -- -- 
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5 CAV deployment scenarios  

With technology advancing and maturing, CAVs will be expected to evolve. This is captured 
and implemented by two different generations of CAVs, i.e., 1st generation and 2nd 

generation. This assumption agrees with (Bansal and Kockelman, 2016). The 
characteristics and parametric assumptions of these two CAV types are presented earlier 
in Table 8, 10 and 11, and their deployment scenarios in Levitate are shown in Table 13. 
 

Table 13: CAV Deployment scenarios in Levitate 

Type of Vehicle  A B C D E F G H 

Human-Driven Vehicle - passenger 

vehicle 

100% 80% 60% 40% 20% 0% 0% 0% 

1st Generation (Cautious) CAV - 
passenger vehicle 

0% 20% 40% 40% 40% 40% 20% 0% 

2nd Generation (Aggressive) CAV -

- passenger vehicle 

0% 0% 0% 20% 40% 60% 80% 100% 

Human-driven - Freight vehicle 100% 80% 40% 0% 0% 0% 0% 0% 

Freight CAV 0% 20% 60% 100% 100% 100% 100% 100% 

 

There is little widespread agreement about the market penetration of CAVs according to 
chronological years so Levitate has estimated impacts on the basis of the proportion of the 
total fleet accounted by each vehicle type (Table 13). The step increase/decrease in fleet 
proportion is kept at 20 to keep the number of scenarios manageable for the simulation 

runs. For each scenario (A, B, …), 10 simulation replications (commonly chosen number) 
are performed in the Aimsun Next software to account for the stochasticity in microscopic 
simulation.  

The scenarios for each sub-use case should be developed that relate to different variations 
in the implementation of sub-use cases.  It should be noted that the selected parameter 
values are based on assumptions for the scope of the project, and the differing values can 

lead to different identified impacts. The suggested values may change in the future as 
automated driving is developing rapidly and it is hard to anticipate which way it should go.  
 
 

Final Remarks 

The modelling of CAVs behaviours in Levitate project is based on the idea of incremental 
development towards perfection in automation, leading to the concept of first- and second-
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generation vehicles. Based on this assumption, the early generation of connected and 
automated vehicles have been considered to have cautious driving characteristics, limited 
sensing and cognitive abilities, data handling and decision making as compared to the 
second generation of CAVs.  

The results in Levitate are reflective of the manner in which CAVs with such characteristics 
and behaviours would operate/perform and consequently impact the transport system. 

Together with the Levitate modelling on CAVs behavioural parameters and impact 
assessment results, there are useful insights for planners, policy makers, and also vehicle 
manufacturers. 
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